2(3^2x+5)=54

Simple and best practice solution for 2(3^2x+5)=54 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3^2x+5)=54 equation:



2(3^2x+5)=54
We move all terms to the left:
2(3^2x+5)-(54)=0
We multiply parentheses
6x^2+10-54=0
We add all the numbers together, and all the variables
6x^2-44=0
a = 6; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·6·(-44)
Δ = 1056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1056}=\sqrt{16*66}=\sqrt{16}*\sqrt{66}=4\sqrt{66}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{66}}{2*6}=\frac{0-4\sqrt{66}}{12} =-\frac{4\sqrt{66}}{12} =-\frac{\sqrt{66}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{66}}{2*6}=\frac{0+4\sqrt{66}}{12} =\frac{4\sqrt{66}}{12} =\frac{\sqrt{66}}{3} $

See similar equations:

| 2x+8+3x-1=32 | | X^2/2=5x | | r/14=7 | | -2y+14=8 | | (2/3x)-4=20 | | B(X)=2x+63 | | 16m+-16m-4m-4=16 | | (5x+4)(4x+7)=0 | | 32-c=-12 | | (90-x)=5(x) | | -3v+-v=16 | | 6^(4x)=63 | | 2(3+3)-4(5x-3)=x(x-3)-x(x+5) | | 0.75x+2=0.125x-3 | | 16k-16k+3k=18 | | 10x+50+45=180 | | 12y+8=15 | | 50+45+10x=180 | | 64-32=4-13y | | 2(x-3/5)=2/7 | | n3=−19 | | 14=q—9 | | 5w=−30 | | (2x+36)+6x=180 | | 2g-1=13 | | 3+6x=18+2x+9 | | -3m+13m=-10 | | 19a+-16a=-9 | | 16b+6b-15b-4=10 | | 4x-5x+9x-2x=84 | | 6x+78=108 | | 18(x-4)=-72 |

Equations solver categories